Sequential Decision-Making in DNA:
From POMDPs to Molecular Controllers

Antonio Llano
Computer Science
Stanford University
llano @stanford.edu

Abstract—Chronic inflammatory diseases, such as rheumatoid
arthritis, are managed today by repeated dose adjustments based
on noisy biomarkers and clinician intuition. This is inherently a
sequential decision-making problem under uncertainty: clinicians
trade off flare risk against drug toxicity over months to years. At
the same time, there is a growing body of work on ‘“computing
drugs,” including DNA-based logic gates and cell therapies
that implement Boolean AND/OR/NOT decisions over molecular
inputs. These systems prove that biochemical substrates can
perform computation in vivo, but their behavior is typically
static: a fixed logic function of current signals, not an adaptive
policy that evolves with the disease.

We propose an end-to-end pipeline that turns a POMDP
treatment strategy into a DNA circuit that could, in principle,
run directly in the biochemical environment it controls. We first
model disease and toxicity as a partially observable Markov
decision process, with biomarker categories as observations and
discretized drug doses as actions. Dynamic programming on
the fully observed model yields an optimal state—action value
function, which defines a belief-space dosing policy. We then
compress this policy into a finite-state controller by clustering
beliefs and learning a Mealy machine whose nodes encode actions
and whose transitions are driven by observed biomarker symbols.
This FSC is compiled into a DNA strand-displacement (DSD) cir-
cuit, where state strands, input strands, and strand-displacement
gates collectively implement the same discrete-time policy as a
chemical reaction network. Finally, we design a topology-aware
reinforcement-learning (RL) environment for nucleotide sequence
optimization, using NUPACK and Peppercorn as thermodynamic
and Kinetic oracles [6], [7]. We validate this RL ‘“sequence
gym” on a hairpin benchmark and outline its application to
FSC-derived circuits. We demonstrate the full pipeline on a
stylized inflammatory-disease simulator, automatically generate
Peppercorn-compatible DSD designs, and discuss how RL-guided
sequence design can yield low-leak, robust in vivo treatment
controllers.

Index Terms—DNA strand-displacement, finite-state con-
trollers, POMDPs, reinforcement learning, DNA computing,
molecular programming

I. INTRODUCTION

DNA strand-displacement (DSD) circuits have demonstrated
Boolean computation (AND/OR/NOT gates), signal restora-
tion, and even small neural networks implemented purely in
chemistry [4], [5]. In parallel, logic-gated cell therapies and
drug carriers activate treatment only under specific combina-
tions of biomarkers [8]. These “computing drugs” show that

Identify applicable funding agency here. If none, delete this.

Shobhit Agarwal

Computer Science

Stanford University
shobhit.agarwal @stanford.edu

Ethan Goodhart
Computer Science
Stanford University

goodhart@stanford.edu

biochemical substrates can evaluate predefined logic functions
over molecular inputs in situ. However, their behavior is
typically static: a fixed combinational map from current inputs
to outputs.

Real-world biosensing and therapy, especially in chronic
inflammatory disease, demands sequential decision-making. A
therapeutic implant monitoring inflammatory biomarkers over
days must accumulate evidence before committing to drug
release, balancing false-positive risk against treatment delay.
Clinicians essentially solve a partially observable, multi-period
decision problem at each visit: they see noisy biomarkers and
symptoms, maintain an implicit belief over disease and toxicity
states, and choose a dose adjustment. Yet current molecular
implementations are largely one-shot or memoryless.

A. From belief updates to finite-state controllers

A natural starting point is to model disease management as a
partially observable Markov decision process (POMDP), with
latent states capturing disease activity and toxicity, actions
as drug doses, and observations as noisy biomarkers. In
principle, one could attempt to implement Bayesian belief
updates directly in DNA, maintaining probability distributions
b:(s) and updating them with each observation. Prior work has
demonstrated one-shot Bayesian inference in DNA for simple
networks, but extending this to multi-episode belief tracking
faces fundamental biophysical barriers:

o« DNA degradation and turnover makes it difficult to

store a precise probabilistic state over long time scales.

o Drift and leak accumulate over sequential strand-

displacement reactions, degrading computational fidelity.
Rather than computing beliefs in DNA, we adopt a compilation
perspective: compute an optimal POMDP policy in silico, then
compress it into a finite-state controller (FSC) with a small
number of discrete memory states. FSCs map directly to DSD
cascades: each controller node corresponds to a molecular
state, and observations trigger strand-displacement reactions
that transit between nodes and emit dosing decisions.

B. Pipeline overview
Fig. 1 summarizes our end-to-end pipeline. At a high level:

1) POMDP layer. We formulate a stylized chronic inflam-
matory disease as a POMDP. Dynamic programming on
the fully observed MDP yields an optimal state—action

In-Silico
POMDP FSC DNA DSD
Solver Representation Circuit
RL Sequence Optimized
Optimizer Sequences
7 w
, \ In-Vitro

| NUPACK | | Peppercorn |

Fig. 1: End-to-end pipeline from POMDP to molecular con-
troller and topology-aware RL sequence optimization.

value function, which we lift to belief space to obtain a
dosing policy 7(b).

2) FSC extraction. We roll out 7w (b) to collect belief
trajectories and cluster beliefs with k-means, yielding a
finite-state controller (Mealy machine) whose nodes en-
code actions and whose observation-labeled transitions
approximate the belief-based policy.

3) DSD compilation. We map the FSC to a DSD architec-
ture: state strands represent controller nodes, observation
strands encode biomarker symbols, and gate complexes
correspond to controller transitions. The output is a
domain-level DSD description in Peppercorn’s .pil
language.

4) RL sequence optimization. Given a DSD topology, we
define a topology-aware RL “gym” whose state includes
nucleotide sequences and structural/kinetic features from
NUPACK and Peppercorn, actions are point mutations,
and rewards favor correct structures, strong intended
reactions, and low leak. An actor—critic policy is trained
via PPO to navigate sequence space.

Our contributions are: (i) a POMDP model and approximate
belief-based policy for a chronic inflammatory disease, (ii)
a clustering-based extraction of small FSCs that preserve
most of the policy’s performance, (iii) a compilation from
FSCs to domain-level DSD circuits, and (iv) a topology-aware
RL environment for sequence design, validated on a hairpin
benchmark and designed to extend to FSC-derived circuits.

II. RELATED WORK

A. POMDPs in medical decision-making

POMDPs formalize sequential decision-making under par-
tial observability [1]. They have been applied to various
medical problems, including chronic disease management and
intensive care decision support [2], [3]. These works assume
digital controllers (software agents) that emit recommenda-
tions, with no attempt to embed the policy in the biochemical
substrate itself. We adopt the POMDP machinery but aim at
a molecular implementation.

B. DNA computing and strand-displacement circuits

DSD has been used to implement logic circuits, oscillators,
and neural networks in vitro [4], [5]. NUPACK [6] supports
thermodynamic analysis and sequence design; Peppercorn [7]
enumerates reaction networks and estimates reaction rates.
Prior work has also demonstrated one-shot Bayesian inference
and simple state machines in DNA. However, most circuits
implement static logic or finite-depth computations; they do
not encode long-lived policies interacting with a stochastic
environment.

C. Molecular logic for therapeutics

Logic-gated CAR-T cells and drug delivery systems deploy
treatment only when specific antigen combinations are de-
tected [8], [9]. These systems demonstrate context-dependent
therapy but are typically memoryless. Our finite-state con-
troller maintains discrete internal memory (nodes) that capture
aspects of disease and toxicity history and condition future
dosing decisions.

D. Finite-state controllers for POMDPs

Finite-state controllers (policy graphs) are a classical repre-
sentation for approximate POMDP solutions [2], [10]. Nodes
encode controller memory; edges are labeled by observations.
Previous work learns FSCs via policy iteration or search,
primarily for digital agents. We obtain FSCs by clustering
belief trajectories induced by an approximate optimal policy
and target a physical DSD realization.

E. RL and sequence design

Reinforcement learning has been applied to RNA and
protein design, where agents propose sequences and receive
rewards from folding or binding oracles [11]. In nucleic-
acid design, NUPACK has been combined with heuristic
optimization for DSD circuits [6]. We extend this line of work
by embedding sequence design in an RL environment that is
explicitly fopology-aware: the RL agent sees features derived
from the specific FSC-derived DSD architecture and receives
feedback from both NUPACK and Peppercorn.

III. DISEASE MODEL AND BELIEF FEATURES

A. State, action, and observation spaces

We define a small POMDP intended to capture the quali-
tative tradeoffs of chronic inflammatory disease management.
The latent state s = (D, T) consists of:

o disease activity D € {0,1,2} (remission, moderate dis-
ease, severe flare);
« toxicity status 7' € {0, 1} (acceptable vs. high toxicity).

The action space is A = {0, 1,2}: no drug, low dose, high
dose. The observation space O = {0,1,2,3} is defined by
discretizing two noisy binary flags: high vs. low inflamma-
tion and acceptable vs. bad toxicity, yielding four biomarker
categories.

B. Transition, observation, and reward models

The transition model T'(s, a, s") factorizes into:

e P(D'|D,a) capturing flare risk and treatment efficacy:
under no drug, disease tends to worsen with some spon-
taneous remission; under low and high dose, disease tends
to improve, with stronger effects at high dose.

e P(T'|T,a) capturing toxicity: high-dose therapy in-
creases toxicity, while toxicity can recover when off drug.

The observation model O(s, o) is constructed by mapping the
latent flags “disease high?” and “toxicity bad?” to four sym-
bols via independent noise parameters, representing imperfect
biomarkers.

The reward function penalizes disease, toxicity, and drug

use:
R(s,a) = —(aD + BT + Aa), (1)

with 8 > a > 0 and A > 0 so that toxicity is weighted more
heavily than disease, and higher doses incur higher costs.

C. Belief state as feature vector

The information state for optimal control is the belief
bi(s) = P(st = s | 00.t, ao:t—1), which evolves under Bayes’
rule:

biy1(s') o< O(s',ot)th(s) T(s,az,s").)

Since |S| = 6, each belief is a 6-dimensional probability
vector. We treat b, itself as the feature representation for
downstream clustering and FSC extraction.

D. Model parameterization

For concreteness, we instantiate the transition, observation,
and reward parameters to capture a stylized but interpretable
inflammatory-disease domain. Disease dynamics encode (i) an
increased flare risk in the absence of treatment, with some
chance of spontaneous improvement, and (ii) progressively
stronger therapeutic effects as dose increases. Toxicity dy-
namics encode an increased risk of high-toxicity states under
treatment and partial recovery when treatment is withheld.
Observations are generated from imperfect biomarkers for
inflammation and toxicity via independent noise channels.
Formally, we use:

o flare and remission parameters pgareno drug = 0.3,
Pspont.remission = 02,
e low- and high-dose improvement probabilities

Pimprove,low = 0.6, Pimprove,high = 0.8;
« toxicity induction and recovery probabilities piox jow =
0.15, Ptox,high = 0.35, Ptox,recover = 0.3;
o inflammation = and toxicity = observation noise
Pobs noise,inflam = 0.2, Pobs noise,tox — 0.1.
The reward weights are set to (o, 8,A) = (2.0,4.0,0.3) so
that toxicity is penalized twice as heavily as disease and high-
dose therapy incurs a modest cost. We use a discount factor
v = 0.95 for dynamic programming on the fully observed
MDP. These choices yield qualitatively reasonable episodes in
which the controller trades off flare risk against cumulative
toxicity.

IV. METHODS
A. Approximate POMDP solution via MDP value iteration

We approximate the POMDP solution by solving the fully
observed MDP and lifting the result to belief space. Value
iteration iterates

Vie+1(s) = max R(s,a)+VZT(S,a,S’)Vk(S’) 3)

until convergence to V*. The optimal state—action value func-
tion is

Q*(s,a) = R(s,a) + va(s, a,s"\V*(s'), 4)

and the MDP policy is mypp(s) = arg max, Q*(s, a).
Given Q*, we define a belief-based policy by expectation:

Q*(b,a) = Y _b(s) Q" (s,),)
7w(b) = arg max Q*(b,a). (6)

This ignores the value of information but produces a simple
and interpretable dosing policy over beliefs. In our implemen-
tation, value iteration is run with v = 0.95 and a convergence
tolerance of 1076 starting from V; = 0.

B. Belief trajectory collection

To prepare for FSC extraction, we simulate many episodes
under 7(b):

1) Initialize by uniformly over S and draw s accordingly.

2) At each time ¢, set a; = 7(b;).

3) Sample St41 T(St, ag,) and O ~ O(St+1,)

4) Update b1 via the belief update equation.
We record (b, ay,04,bi41) for all time steps. This dataset
captures how the approximate optimal policy uses information
over time. In the rheumatoid-arthritis case study below, we use
500 episodes of length I = 50 steps each, with independent
initial states and observation noise draws across episodes.

C. Finite-state controller extraction

A finite-state controller (FSC) is a triple (N, a(-),7(-, ")),
where A" = {0,..., K — 1} is a finite set of nodes, a : ' —
A assigns an action to each node, and 7 : N x O — N
is a deterministic transition function. The FSC maintains a
node n;, emits a(n;) as the action, observes o;, and updates
Ni41 = ’7'(’I’Lt7 Ot).

We construct an FSC from belief trajectories as follows:

1) Clustering beliefs: Apply k-means clustering to the set
{b:}, yielding K clusters with centroids cj; each cluster
index k defines a controller node.

2) Action assignment: For each cluster k, collect all
actions a; where b, is in cluster &, and set a(k) to the
majority action.

3) Transition assignment: For each pair (k, o), consider
all steps with b; in cluster k£ and o; = o, and look at
the clusters of b;y1. Set 7(k,0) to the most common

obs i @ obs g /S-Z\ confirm

@

Release

Fig. 2: Example 5-node FSC topology for adaptive drug
delivery. Nodes represent internal evidence states; edges are
labeled by biomarker observations and trigger state transitions
leading to a release action.

next cluster; if no such transitions exist, use a self-loop
7(k,0) = k.

Clustering is performed with standard k-means (Euclidean
distance) initialized from random centroids. For the chronic-
disease POMDP, we typically use modest controller sizes
(K = 4-5) to balance expressivity and interpretability; the
5-node FSC in Fig. 2 illustrates a representative topology.

Fig. 2 illustrates an example 5-node FSC topology for
adaptive drug delivery in an inflammatory disease domain:
nodes encode internal “evidence” about persistent high inflam-
mation, and transitions labeled by high/low observations and
“reset” reflect accumulating evidence and occasional resets,
terminating in a release state.

D. Compilation to DSD circuits

Given an FSC, we first compile it to a formal chemical-
reaction network that explicitly represents controller nodes and
observation pulses. For K nodes and |O| observations, we
introduce signal species

« node species Zy, ..
memory states, and

o observation species Og,..., O\O\—l
biomarker symbols delivered as pulses.

., ZK—1 corresponding to controller

representing

For each FSC transition & > k', we add a reaction Z,+0, —
Zy to the CRN; optionally, we can add readout reactions
Zyx — Zy + Aq(r to expose the action a(k) at node k. This
CRN implements the same discrete-time Mealy semantics as
the FSC when run under pulsed observations.

To obtain a DSD implementation, we pass this controller
CRN to Nuskell [12], using a standard translation scheme
(e.g., srinivas2015.ts) to generate a domain-level DSD
design in Peppercorn’s .pil language. Nuskell introduces
an internal domain vocabulary and gate complexes whose
effective behavior realizes the input reactions, and it annotates
the resulting .pil with the original CRN. We then feed the
.pil file to Peppercorn, which enumerates the implied strand-
displacement reaction network and associates approximate rate
constants. In this workflow, our custom contribution is the
systematic construction of the controller CRN from the FSC;
the choice of gate motif and low-level domain assignment is
delegated to Nuskell’s translation scheme.

E. Topology-aware RL sequence optimization

Assigning concrete nucleotide sequences to the domains in
a DSD circuit is a high-dimensional, constrained optimization
problem. Traditional approaches (e.g., NUPACK design) opti-
mize thermodynamics but do not explicitly optimize kinetics
or leak in the context of a specific reaction topology. To
close this loop, we define a topology-aware RL “gym” whose
environment state encodes both sequence and circuit-level
performance.

1) RL environment: state, action, reward: For a given DSD
topology (hairpin or FSC-derived circuit), we define:

o State: one-hot encoded nucleotide sequences for all
domains, together with scalar features derived from
structure and topology. Concretely, the environment
maintains a dictionary containing: (i) a tensor of
shape (#domains, max length,4) encoding the current
sequences, (ii)) NUPACK-derived features such as mean
minimum free energy (MFE) across strands and a
topology-aware crosstalk score that penalizes strong bind-
ing between strands that are not listed as reactants in
any intended reaction, (iii) per-domain GC content, and
(iv) bookkeeping features such as the remaining mutation
budget. For neural policies, this dictionary is flattened
into a fixed-length vector; for the hairpin benchmark
this yields a 69-dimensional observation. When Pepper-
corn kinetics are used, we additionally attach coarse
summaries of the enumerated reaction network (e.g.,
aggregate intended and leak rates), but the mapping be-
tween Peppercorn’s symbolic complexes and the abstract
domains and strands remains approximate.

e Action: a discrete mutation of the form ‘“change
base at position j in domain 7 to nucleotide
b € {ACG,T}”. Internally, actions factor as

(domain index, position index, base) in a product action
space; for compatibility with standard PPO implementa-
tions we flatten this to a single discrete index. For the
hairpin environment, this results in 64 possible actions;
for larger circuits, the action space scales with the number
and length of domains.

e Reward: a scalar combining multiple objectives linked
to the circuit topology:

— a structure term that rewards agreement between
predicted structures and topology-specified targets
when available;

— a crosstalk term that penalizes strong unintended
binding between strand pairs that are not reactants
in any intended reaction, with thresholds taken from
circuit-level constraints;

— a kinetics term that favors large aggregate intended
reaction rates relative to a minimum acceptable rate;

— a leak term that penalizes large leak rates relative to
a maximum acceptable leak threshold;

— regularizers on GC content (encouraging values near
50%) and thermodynamic stability (more negative
MFE).

In implementation these contributions are combined via
simple piecewise-linear or logarithmic heuristics rather
than a single closed-form expression, but they instantiate
the qualitative form

B. Controller CRN vs. DSD implementation

To verify that the DSD implementation produced by Nuskell
and Peppercorn faithfully realizes the abstract controller dy-
namics, we compare trajectories in the controller CRN and

I A Werue(Structure) — Wy (crosstalk) + wing 10g kin— wieak lofgnumerated DSD reaction network. From the controller

(7
with soft penalties for extreme GC content and unstable
or overly metastable designs.

At each step of an episode, the agent proposes a muta-
tion; the environment updates the sequence, calls NUPACK
and Peppercorn to recompute features, and returns a reward.
Episodes consist of a fixed number of mutations (e.g., ~10);
the goal is to maximize cumulative reward.

2) Policy architecture and training: We implement a
21.5K-parameter actor—critic network with:

e a 69-dimensional input,

o two hidden layers of size 64 with nonlinearities,

« a policy head outputting action logits over 64 actions, and
o a value head predicting state value.

We train this network using Proximal Policy Optimization
(PPO) [13] over 100K environment steps, with rollout length
2048 and minibatch size 64, as implemented in Stable-
Baselines3 [14]. PPO’s clipped objective and value loss sta-
bilize training while allowing the policy to explore sequence
space.

V. EXPERIMENTS AND DISCUSSION

We report experiments along two axes: (i) FSC approx-
imation quality and interpretability, and (ii) RL sequence
optimization performance on a benchmark hairpin circuit and
the planned FSC-derived circuit.

A. FSC vs. belief-based policy

We simulate multiple episodes in the disease environment
under both the belief-based policy 7(b) and the FSC-induced
policy mpsc (which chooses actions according to the node and
updates nodes online via the same clustering mapping). Our
primary metric is the average return over a fixed horizon:

H—-1
Z rt] . (8)

t=0

J(m)=E

For moderate controller sizes (K = 4-5), mpsc preserves
most of the return of m(b); the performance gap reflects
approximation error from clustering and finite memory. In our
experiments, we average over 200 episodes of length I = 50
with independent initial states and noise realizations for each
policy.

The extracted FSCs are interpretable: nodes associated with
beliefs concentrated on high disease and low toxicity states
tend to choose aggressive dosing, while nodes associated with
high toxicity select conservative actions. Transitions driven by
“bad toxicity” observations move the controller into cautionary
nodes; repeated “high inflammation” observations move it
toward nodes closer to a release decision.

CRN we parse the node species Zy, ..., Zx—_1 and reactions
Zi + O, — Zj; from Peppercorn’s output we extract the
corresponding signal species (again including Z; and O,)
and the full set of mass-action reactions involving them and
auxiliary fuel species. We initialize both systems with all mass
on Z; and no observations, then integrate deterministic mass-
action ODEs forward in time using a fixed-step Runge—Kutta
method.

We consider both a baseline run with no observations and
a run in which a pulse of observation species (e.g., Op)
is injected at time t,ps. At each time point, we aggregate
concentrations of the node species to obtain a vector of “state
scores,” normalize to unit sum, and interpret the result as
a belief-like vector over controller nodes. The normalized
trajectories from the controller CRN and the DSD reaction
network qualitatively agree: mass stays concentrated on Z; in
the absence of observations, while an Oy pulse shifts mass
toward the same downstream nodes in both models. This sup-
ports the claim that the Nuskell/Peppercorn DSD realization
preserves the intended finite-state controller dynamics at the
level of node occupancy.

C. RL gym validation: hairpin benchmark

Before applying RL to FSC-derived circuits, we validate our
topology-aware gym on a simple 2-domain hairpin: domain d1
(8 nt) and d2 (6 nt) forming target structure ((((....)))).
The goal is to find sequences that fold into this hairpin with
favorable thermodynamics and no spurious alternatives.

The RL environment state includes the sequences for d1 and
d2 and NUPACK-derived features (MFE, structural similarity,
GC content, homopolymers). We train the 21.5K-parameter
actor—critic network via PPO for 100K steps. In a represen-
tative run, episodes initially last only a single mutation with
average reward ~1.5 (essentially random proposals); by S0K-
100K steps, the agent executes ~10 mutations per episode and
attains average reward around 6.0, indicating more deliberate
mutation sequences and improved designs. Training this 100K-
step run takes on the order of a minute on a single CPU core
(roughly 1.8K environment steps per second). Fig. 3 shows
training curves.

Qualitatively, the learned policy discovers known design
heuristics: avoid long homopolymers (AAAA/GGGG), bal-
ance GC content near 50%, and drive the MFE below
—10 kcal/mol. In particular, starting from random sequences
with MFE typically in the range —2 to —5 kcal/mol, op-
timization often produces designs with MFE between —8
and —10 kcal/mol and near-zero crosstalk for non-interacting
strands. Quantitatively, RL achieves comparable structural
quality to NUPACK’s native design on this simple benchmark.
This supports the viability of using RL with NUPACK as an

Hairpin Circuit: Training Progress Hairpin Circuit: Method Comparison
100 05 a5

—— Target Threshold

-100

-200

Reward

Crosstalk Score

°

-300
rd =-2000
-400

-500

0 20 40 60 80 100
Training Steps (x1000)

Random Single-Shot RL (Ours)
NUPACK

(a) Training reward. (b) RL vs. NUPACK.

Fig. 3: Hairpin RL gym validation. Left: reward improves from
~1.5 at initialization to peaks above 20 within the first 20K
steps before settling near 6.0 as the policy converges. Right:
RL-designed sequences achieve comparable quality to single-
shot NUPACK design on this benchmark.

oracle and motivates applying it to more complex FSC-derived
circuits where no prior heuristic exists.

D. Toward FSC-POMDP circuit sequence design

For the 5-node FSC topology in Fig. 2, we define a DSD
circuit with:

e 7 distinct domains (transition toeholds and branch-
migration regions),

o 6 strands (5 state strands plus one output signal strand),

« 4 intended reactions (state transitions triggered by obser-
vations).

We are in the process of specifying these complexes in dot-
parens notation and instantiating an RL environment where the
state includes NUPACK structural features and Peppercorn-
estimated rates for intended transitions (e.g., kf > 1073 571
and leaks (e.g., kieax < 1076 s71), computed in a topology-
aware manner using the underlying FSC-derived circuit graph.
A practical challenge is that Peppercorn’s reaction enumera-
tion introduces a large set of auxiliary complexes and species
with autogenerated names; mapping these symbolic artifacts
back to our abstract domains, strands, and intended reac-
tions is nontrivial and currently relies on coarse summaries
such as mean intended rate and worst-case leak rather than
per-transition kinetics. Similarly, NUPACK and Peppercorn
operate at different levels of coarse graining, with distinct
assumptions about concentrations and rate scaling, so kinetic
features in the RL state inevitably approximate rather than
exactly match the effective in vitro behavior. The same PPO-
based agent architecture will then be tasked with discovering
sequences that realize the FSC transitions with favorable
kinetics and minimal crosstalk, and improving this mapping
between enumerated reaction networks, domain-level designs,
and sequence-level constraints remains an important limitation
and target for future work.

E. Limitations and discussion

Our study has several limitations. The disease model is
stylized and does not capture the full complexity of inflam-
matory diseases. The POMDP solution is approximate and
does not fully account for information-gathering actions. The
FSC extraction is based on k-means and majority voting; more

principled FSC optimization algorithms exist. The DSD gate
motif is simple and not yet experimentally optimized. On
the RL side, the hairpin benchmark is relatively easy; FSC-
derived circuits will be more challenging due to larger state
and action spaces and more complex energy landscapes. In
addition, while our RL environment is topology-aware in that
reward components and structural features are derived from a
symbolic circuit description, the bridge between that descrip-
tion and the detailed reaction networks produced by tools like
Peppercorn is imperfect: many intermediate complexes cannot
be cleanly mapped back to individual FSC transitions, and
kinetic summaries in the RL state necessarily compress this
complexity. Finally, our sequence-generation policy currently
relies on local point mutations and simple priors over bases;
developing richer sequence moves and tighter integration
between NUPACK- and Peppercorn-based evaluations is an
important direction for improving design quality.

Despite these limitations, the combination of POMDP-
derived FSCs, DSD compilation, and topology-aware RL
represents, to our knowledge, the first systematic pipeline
from high-level decision problems to molecular hardware. The
RL gym framework is particularly appealing for idiosyncratic
topologies (like FSC-POMDP controllers) where heuristic
sequence design rules do not yet exist.

VI. CONCLUSION AND FUTURE WORK

We presented a pipeline that starts from a POMDP model
of chronic inflammatory disease management and ends with a
domain-level DSD circuit implementing a finite-state approx-
imation of an optimal dosing policy, along with a topology-
aware RL environment for sequence design. Our main conclu-
sions are:

o POMDP-derived dosing policies can be compressed into
small finite-state controllers that preserve much of the
original policy’s performance and exhibit interpretable
structure.

o These FSCs can be systematically compiled into DSD ar-
chitectures, producing Peppercorn-compatible .pil files
that reflect the controller topology.

e A topology-aware RL gym, coupled to NUPACK and
Peppercorn, can learn sequence design heuristics and
achieve competitive performance with established tools
on a hairpin benchmark, and is positioned to tackle FSC-
derived circuits where prior heuristics are lacking.

Future directions include: (i) adopting more realistic disease
simulators or data-driven models, (ii) directly optimizing FSCs
for POMDP performance (rather than post-hoc clustering),
(iii) integrating experimentally validated DSD motifs and
sequence-level constraints, (iv) scaling the RL gym to full
FSC circuits and comparing RL-designed sequences against
NUPACK-only baselines, and (v) ultimately, experimental
validation of small FSC-based DNA controllers in vitro.

AUTHOR CONTRIBUTIONS

Antonio Llano conceived the overall POMDP-to-DSD
pipeline, implemented the rheumatoid-arthritis disease model

and FSC extraction code, contributed to the design of the
topology-aware RL gym, and led the writing of the paper.
Shobhit Agarwal designed and implemented the topology-
aware RL environment, including the DNA circuit gym,
NUPACK/Peppercorn integration, and PPO-based training ex-
periments. Ethan Goodhart developed the CRN and DSD
simulation and comparison framework and contributed to the
analysis of FSC vs. belief-based policies.

ACKNOWLEDGMENT

The authors thank collaborators and domain experts in
rheumatology, molecular programming, and control theory for
valuable discussions.

REFERENCES

[11 R. D. Smallwood and E. J. Sondik, “The optimal control of partially ob-
servable Markov processes over a finite horizon,” Operations Research,
vol. 21, no. 5, pp. 1071-1088, 1973.

[2] M. Hauskrecht and H. Fraser, “Planning treatment of ischemic heart
disease with partially observable Markov decision processes,” Artificial
Intelligence in Medicine, vol. 18, no. 3, pp. 221-244, 2000.

[3] O. Gottesman et al., “Guidelines for reinforcement learning in health-
care,” Nature Medicine, vol. 25, pp. 16-18, 2019.

[4] E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, “Design and
self-assembly of two-dimensional DNA crystals,” Nature, vol. 394, pp.
539-544, 1998.

[5] L. Qian and E. Winfree, “Scaling up digital circuit computation with
DNA strand displacement cascades,” Science, vol. 332, no. 6034, pp.
1196-1201, 2011.

[6] J. N. Zadeh et al., “NUPACK: analysis and design of nucleic acid
systems,” Journal of Computational Chemistry, vol. 32, no. 1, pp. 170-
173, 2011.

[71 M. R. Lakin, D. P. Petrone, and A. Phillips, “Automated analysis
of strand displacement systems using the Peppercorn tool,” in DNA
Computing and Molecular Programming, vol. 7433, Springer, 2012.

[8] K. T. Roybal er al., “Precision tumor recognition by T cells with
combinatorial antigen-sensing circuits,” Cell, vol. 164, no. 4, pp. 770-
779, 2016.

[9] C. C. Kloss et al., “Control of CAR T cell activity: a dual receptor
system,” Journal of Immunology, vol. 191, no. 2, pp. 870-876, 2013.

[10] N. Meuleau et al., “Learning finite-state controllers for partially observ-
able environments,” in UAI, 1999, pp. 427-436.

[11] C. Angermueller er al., “Augmenting biological designs with deep
learning,” Cell Systems, vol. 10, no. 6, pp. 523-537, 2020.

[12] S. Badelt, S. W. Shin, R. F. Johnson, Q. Dong, C. Thachuk, and
E. Winfree, “A general-purpose CRN-to-DSD compiler with formal ver-
ification, optimization, and simulation capabilities,” in DNA Computing
and Molecular Programming (DNA23), 2017, pp. 232-248.

[13] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, ‘“Proxi-
mal Policy Optimization Algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[14] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dor-
mann, “Stable-Baselines3: Reliable Reinforcement Learning Implemen-
tations,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1—
8, 2021.

